A Molecular Phylogenomic Analysis of the ILR1-Like Family of IAA Amidohydrolase Genes

نویسندگان

  • James J. Campanella
  • Daniel Larko
  • John Smalley
چکیده

The ILR1-like family of hydrolase genes was initially isolated in Arabidopsis thaliana and is thought to help regulate levels of free indole-3-acetic-acid.We have investigated how this family has evolved in dicotyledon, monocotyledon and gymnosperm species by employing the GenBank and TIGR databases to retrieve orthologous genes. The relationships among these sequences were assessed employing phylogenomic analyses to examine molecular evolution and phylogeny. The members of the ILR1-like family analysed were ILL1, ILL2, ILL3, ILL6, ILR1 and IAR3. Present evidence suggests that IAR3 has undergone the least evolution and is most conserved. This conclusion is based on IAR3 having the largest number of total interspecific orthologues, orthologous species and unique orthologues. Although less conserved than IAR3, DNA and protein sequence analyses of ILL1 and ILR1 suggest high conservation. Based on this conservation, IAR3, ILL1 and ILR1 may have had major roles in the physiological evolution of 'higher' plants. ILL3 is least conserved, with the fewest orthologous species and orthologues. The monocotyledonous orthologues for most family-members examined have evolved into two separate molecular clades from dicotyledons, indicating active evolutionary change. The monocotyledon clades are: (a) those possessing a putative endoplasmic reticulum localizing signal; and (b) those that are putative cytoplasmic hydrolases. IAR3, ILL1 and ILL6 are all highly orthologous to a gene in the gymnosperm Pinus taeda, indicating an ancient enzymatic activity. No orthologues could be detected in Chlamydomonas, moss and fern databases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination.

Auxins are hormones important for numerous processes throughout plant growth and development. Plants use several mechanisms to regulate levels of the auxin indole-3-acetic acid (IAA), including the formation and hydrolysis of amide-linked conjugates that act as storage or inactivation forms of the hormone. Certain members of an Arabidopsis amidohydrolase family hydrolyze these conjugates to fre...

متن کامل

Hormone crosstalk in wound stress response: wound-inducible amidohydrolases can simultaneously regulate jasmonate and auxin homeostasis in Arabidopsis thaliana.

Jasmonate (JA) and auxin are essential hormones in plant development and stress responses. While the two govern distinct physiological processes, their signaling pathways interact at various levels. Recently, members of the Arabidopsis indole-3-acetic acid (IAA) amidohydrolase (IAH) family were reported to metabolize jasmonoyl-isoleucine (JA-Ile), a bioactive form of JA. Here, we characterized ...

متن کامل

Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum

Amide-linked conjugates of indole-3-acetic acid (IAA) have been identified in most plant species. They function in storage, inactivation or inhibition of the growth regulator auxin. We investigated how the major known endogenous amide-linked IAA conjugates with auxin-like activity act in auxin signaling and what role ILR1-like proteins play in this process in Arabidopsis. We used a genetically ...

متن کامل

IAR3 encodes an auxin conjugate hydrolase from Arabidopsis.

Amide-linked conjugates of indole-3-acetic acid (IAA) are putative storage or inactivation forms of the growth hormone auxin. Here, we describe the Arabidopsis iar3 mutant that displays reduced sensitivity to IAA-Ala. IAR3 is a member of a family of Arabidopsis genes related to the previously isolated ILR1 gene, which encodes an IAA-amino acid hydrolase selective for IAA-Leu and IAA-Phe. IAR3 a...

متن کامل

Mechanisms on Boron-Induced Alleviation of Aluminum-Toxicity in Citrus grandis Seedlings at a Transcriptional Level Revealed by cDNA-AFLP Analysis

The physiological and biochemical mechanisms on boron (B)-induced alleviation of aluminum (B)-toxicity in plants have been examined in some details, but our understanding of the molecular mechanisms underlying these processes is very limited. In this study, we first used the cDNA-AFLP to investigate the gene expression patterns in Citrus grandis roots responsive to B and Al interactions, and is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comparative and Functional Genomics

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2003